If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30=-4.9x^2+30x+0.5
We move all terms to the left:
30-(-4.9x^2+30x+0.5)=0
We get rid of parentheses
4.9x^2-30x-0.5+30=0
We add all the numbers together, and all the variables
4.9x^2-30x+29.5=0
a = 4.9; b = -30; c = +29.5;
Δ = b2-4ac
Δ = -302-4·4.9·29.5
Δ = 321.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-\sqrt{321.8}}{2*4.9}=\frac{30-\sqrt{321.8}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+\sqrt{321.8}}{2*4.9}=\frac{30+\sqrt{321.8}}{9.8} $
| w+47+4w+2w=180 | | t+41+t+20+91=180 | | 62+54+2x=180 | | -9+21s=180 | | -127+12c=180 | | 19+14z=180 | | -23+17s=180 | | 24+13z=180 | | 76+2t=180 | | -100+5p=180 | | -1+14y=180 | | -10+6x=180 | | 36+16s=180 | | 96+3t=180 | | 30+5s=180 | | 60+6c=180 | | -35+5b=180 | | 10+17a=180 | | -16+4w=180 | | 150+s=180 | | 39+3p=180 | | -60+8c=180 | | -44+4w=180 | | 178+2a=180 | | 125+11a=180 | | 44+8b=180 | | 124+7t=180 | | 50+10y=180 | | 126+3s=180 | | 146+17t=180 | | 108+3t=180 | | 52+8z=180 |